MyTimeMachine: Personalized Facial Age Transformation
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Figure 1. We introduce MyTimeMachine to perform personalized age regression (top) and progression (bottom) by training a person-
specific aging model from a few (~50) personal photos spanning over a 20-40 year range. Our method outperforms existing age trans-
formation techniques to generate re-aged faces that closely resemble the characteristic facial appearance of the user at the target age.

Abstract

Facial aging is a complex process, highly dependent on
multiple factors like gender, ethnicity, lifestyle, etc., mak-
ing it extremely challenging to learn a global aging prior to
predict aging for any individual accurately. Existing tech-
niques often produce realistic and plausible aging results,
but the re-aged images often do not resemble the person’s
appearance at the target age and thus need personaliza-
tion. In many practical applications of virtual aging, e.g.
VFX in movies and TV shows, access to a personal photo
collection of the user depicting aging in a small time inter-
val (20~40 years) is often available. However, naive at-
tempts to personalize global aging techniques on personal
photo collections often fail. Thus, we propose MyTimeMa-
chine (MyTM), which combines a global aging prior with
a personal photo collection (using as few as 50 images) to
learn a personalized age transformation. We introduce a
novel Adapter Network that combines personalized aging
features with global aging features and generates a re-aged
image with StyleGAN2. We also introduce three loss func-
tions to personalize the Adapter Network with personalized
aging loss, extrapolation regularization, and adaptive w-
norm regularization. Our approach can also be extended
to videos, achieving high-quality, identity-preserving, and
temporally consistent aging effects that resemble actual ap-
pearances at target ages, demonstrating its superiority over
state-of-the-art approaches.

1. Introduction

What makes face aging so challenging? Virtual age trans-
formation algorithms aim to digitally simulate the physical
aging process of an individual’s face. The goal of these
methods [16, 18, 29, 33, 40, 63, 69] is to modify the shape
and texture of the face to create the desired re-aging effect,
while preserving the individual’s unique identity, along with
the pose, lighting, and style of the input image. However,
facial aging is often highly dependent on several factors,
such as ethnicity, gender, genetics, lifestyle, and health con-
ditions [34, 53], which makes it challenging to model.

Existing age transformation algorithms [2, 15, 18] learn
a generative global prior, modeling how an average face
ages, using datasets like FFHQ [21]. While these meth-
ods have advanced in generating visually pleasing re-aging
effects, they often fail to accurately depict how an individ-
ual actually ages. For instance, when provided with an im-
age of Al Pacino at 68 years old, state-of-the-art techniques
[2, 7, 15, 18] can produce a realistic yet inaccurate version
of his appearance at 30, as shown in Fig. 1. For many prac-
tical applications, e.g. re-aging actors in films, it is crucial
to accurately re-age individuals to the target age, as view-
ers are often familiar with the actor’s appearance at various
stages of life. However, accurately predicting an individ-
ual’s re-aged appearance from a single image is highly ill-
posed and challenging, since aging is person-specific [11].



In this paper, we show that accurate age synthesis can
be performed when an algorithm has access to as few as
50 photos of an individual across a 20~40 year time range.
Personal photo collections are often available in many prac-
tical applications of virtual aging, and utilizing them can
significantly improve the result, see MyTimeMachine in
Fig 1. For example, consider de-aging effects often used
in movies where a particular actor at 60 years old is shoot-
ing a scene where they need to be rendered as 30 years old.
We can easily access the past 20~40 years of photos of the
actor to learn an accurate aging model. Similarly, consider
an individual interested in simulating how a photograph of
their loved one at 40 years would appear at 60 years old or
beyond. We can also easily access the past 10-20 years of
photo collection of their loved ones to understand the aging
process and more accurately simulate their future appear-
ance at 60 years and beyond. We therefore create a person-
alized aging method that can transform an input image to
any target age, both within and beyond the age range repre-
sented in the personal photo collection used for training.

Simply personalizing a generic global age transforma-
tion algorithm, e.g. FADING [7], with Dreambooth [50] is
ineffective. Personal photo collections often cover a limited
range of age, pose, lighting, and style variations compared
to large-scale facial datasets like FFHQ. Consequently,
naive fine-tuning typically results in overfitting, limiting the
model’s ability to generalize to unseen ages, poses, styles,
and lighting conditions, as shown by the extrapolation fail-
ure of FADING + Dreambooth in row 4 of Fig. 4. Addi-
tionally, FADING is built on diffusion, facing the typical
inversion-editability trade-off problem [17, 58]. Specifi-
cally, re-aging requires both high fidelity to the input face at
similar ages and high editability as the target age diverges.
In contrast, such trade-offs have been more well explored
in StyleGAN2’s well-trained latent space [5, 47, 58, 62].
Therefore, we demonstrate an effective approach to person-
alized age transformation based on StyleGAN?2.

Our proposed personalized age transformation network,
MyTimeMachine (MyTM), introduces a novel adapter net-
work that updates global facial aging features with person-
alized aging characteristics, trained on a personal photo col-
lection using custom loss functions. Built on top of SAM
[2], a global age transformation network capable of con-
tinuous aging without per-image optimization, MyTM en-
hances SAM’s global age encoder, which projects an input
image into StyleGAN?2’s latent space with a specified target
age. We design a personalized adapter network that learns
to adjust the global aging features. To train this adapter,
we introduce three loss functions: personalized aging loss,
extrapolation regularization, and adaptive w-norm regular-
ization. The personalized aging loss ensures that identity-
preserving features of the reaged image closely resemble
those in a reference image from the personal photo col-

lection at a similar target age. Extrapolation regulariza-
tion controls aging effects beyond the training age range us-
ing global priors, while adaptive w-norm regularization ad-
dresses StyleGAN'’s inversion-editability trade-off, ensur-
ing distinct shape and texture changes due to aging while
preserving identity. We then extend MyTM to video re-
aging by utilizing face-swapping techniques to generate
temporally consistent and identity-preserving results.

We curated a longitudinal aging dataset comprising high-
quality images of 12 celebrities, captured under diverse con-
ditions, including varying poses, expressions, and lighting.
Inspired by real-world applications of personalized aging,
we train our model on this dataset and establish two ex-
perimental frameworks to evaluate its performance: one for
age regression, where a 70-year-old is rendered younger,
and another for age progression, where a 40-year-old is ren-
dered older. Our method outperforms existing global age
transformation and naive personalization techniques, deliv-
ering high-quality, identity-preserving aging effects in both
images and videos that closely resemble each individual’s
actual appearance at the target age.

In summary, our contributions are as follows: (i) We
demonstrate that with access to a few (~50) personal im-
ages spanning a few decades (20~40 years), we can achieve
high-quality, identity-preserving facial age transformations.
These transformations accurately reflect the person’s ap-
pearance at the target age while maintaining the style of the
input image. (ii) We introduce several key technical ad-
vancements that integrate a global aging prior with a per-
sonal photo collection to enable personalized aging. Our
approach trains an adapter network to adjust the global ag-
ing prior, utilizing three custom loss functions: personal-
ized age loss, extrapolation regularization, and adaptive w-
norm regularization. (iii) We show that MyTM can also
be extended to perform temporally consistent and identity-
preserving reaging in videos, which is important for many
VEX applications.

2. Related Work

Traditional age transformation methods fall into two cate-
gories: prototype-based [24, 57] and physical model-based
approaches [52, 55]. For a detailed overview, we refer read-
ers to the survey by [13]. Recently, generative models have
shown impressive results in synthesizing and editing high-
resolution face images, inspiring their use in aging tasks.
Global Age Editing. Global age editing refers to age trans-
formation without personal data. Prior works [38, 51] lever-
age StyleGAN2’s well-trained latent space, identifying and
traversing a linear age editing direction within it. However,
this assumption often fails with larger age changes, espe-
cially across a lifespan, and can entangle other attributes
(e.g., gender or glasses) [19]. To address this, recent meth-
ods [40, 66] introduce nonlinear aging paths in the latent
space by training separate age encoders.



In diffusion models, several methods [4, 26, 28] per-
form age editing through latent manipulation guided by
CLIP [43]. However, these methods continue to struggle
with attribute entanglement in the latent space. FADING [7]
improves disentanglement by projecting the input face into
the diffusion model’s latent space using NTI [35] and ap-
plying age editing through p2p [17].

However, FADING focuses on textural changes to
achieve re-aging, neglecting the broader facial shape
changes that occur over a person’s lifespan [15]. This
limitation arises because p2p identifies age-related pixels
through attention control, resulting in localized edits rather
than facial structural changes [49]. To address this, we build
on StyleGAN?2, leveraging its well-trained latent space for
both fine-grained textural control and structural changes.
Personalization of Generative Models. Personalization
involves tuning face models with personal images. PTI [47]
fine-tunes a StyleGAN2 generator anchored by an inverted
latent code. Other approaches [37, 42, 67] adapt the gener-
ator on a small set of personal images (50~100) to create
a personalized prior. In diffusion models, Dreambooth [50]
optimizes the weights of the text-to-image network to adapt
to a specific subject through a prompt identifier.

In the context of lifespan age transformation, these per-

sonalization techniques often overfit to the few training im-
ages in a limited range (e.g., ages 50 to 70), making it
challenging to extrapolate to ages beyond the training range
(e.g., 20 years old). We demonstrate that MyTM produces
personalized face aging results within the training age range
and generalizes to ages beyond it.
Video Re-aging. A recent video re-aging approach,
FRAN [72], applies facial masks to predict age-related
changes within masked regions per frame. However, sim-
ilar to FADING, such method often overlooks structural
changes in facial shape that naturally occur over a person’s
lifetime, such as the widening of a previously narrow face
due to bone growth and shifts in facial fat distribution with
age [15]. It also suffers with temporal consistency since it is
trained on static images. To address this, Mugeet et al. [36]
propose a re-aging model trained on synthetic video data,
generating re-aged keyframes and interpolating between
them to enhance temporal consistency. However, neither of
these approaches is open-sourced or supports personalized
video re-aging. Recent work [20] seeks to enhance temporal
consistency in identity-specific face-swapping by personal-
izing models for individual users. However, this approach
demands around 5,000 images of the person’s face captured
under various conditions, all at a similar age, limiting its
effectiveness for lifespan aging transformations.

To address this, we follow face-swapping techniques [6,
65], using our personalized re-aged face as the source for
swapping. This approach eliminates the need for training a
dedicated model on a large number of personal images.

3. Method

In Sec. 3.1, we begin by outlining the fundamentals of
global aging, SAM [2]. Next, Sec. 3.2 introduces our per-
sonalized aging adapter, MyTM, and explains how we inte-
grate personal aging with global aging. Finally, we present
the training losses for MyTM in Sec. 3.3.

3.1. Preliminaries
Here we provide a brief overview of SAM [2], a global age
transformation network that forms the building block of our
proposed personalized network, MyTM. SAM trains an age
encoder (Ey) that maps an input image (x) into the latent
space W of StyleGAN, aligning with the desired target
age (ay). The latent code is then processed through the
pre-trained StyleGAN (D) to generate the age-transformed
face (yg). SAM is trained on the FFHQ dataset [22],
where the training procedure involves producing an age-
transformed output y = Dy(Eg(x,ay)) in a forward
pass. This process is supervised by the 10ss Liyrward, €nCOUr-
aging the re-aged image to be similar to the input image:
Lforwaxd (ytgl) :)\12‘62 (ytgl) + )\lpips‘CLPlPS (ytgt)

+ )\idEID(ytgt) + )\ageﬁage(ytgt) (1)
Lo, Lipips and Lip matches age-transformed image (yg1)
to input image (z) in pixel space, LPIPS feature space [68]
and ArcFace [9] feature space respectively. L.z, matches

the predicted age by a face age detector, DE X () [48], with
target age

Lage (g) = |lag — DEX (y1gt) [|2 2
After the forward pass, SAM encourages the transformed
image (y) to be re-transformed back to the input image.
This process helps ensure cycle consistency [71] and can
be formally described as yeycle = Do (Eg (g, @) With the
same loss: Leyele (Yeyele) = Lrorward (Yeyele). The complete
training loss is then given by:

Lam = Lforward(ytgt) + £cycle(ycycle) 3)

3.2. MyTM: Designing a Personalized Age Adapter
Training a personalized aging prior from scratch is subop-
timal due to the limited availability of personal aging data.
To address this, we introduce MyTM, which personalizes
a pre-trained age encoder by combining two components:
1) SAM, a pre-trained age encoder that captures a shared
global aging prior learned from a diverse set of identities,
and 2) Age Adapter, a personalized age adapter network
trained exclusively on an individual. Specifically, we as-
sume the individual has a personal photo collection of N
RGB images, x;, each with an associated ground truth age,
a;, represented as D = {(z;, ai)}fil.

Our key idea is to update the age-transformed la-
tent code thl produced by the global age transforma-
tion network, SAM, using a personalized adapter network,
AN(-). The adapter takes the latent vector W predicted

by SAM and computes an offset latent vector AW@ =
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Figure 2. Given an input face of Oprah Winfrey at 70 years old, our adapter re-ages her face to resemble her appearance at 30, while
preserving the style of the input image. To achieve personalized re-aging, we collect ~50 images of an individual across different ages
and train an adapter network that updates the latent code generated by the global age encoder SAM. Our adapter preserves identity during
interpolation when the target age falls within the range of ages seen in the training data, while also extrapolating well to unseen ages.

AN(Eg(z, aigt), arg). As shown in Fig. 2, we then combine
this personalized latent adaptation AW{g"t with the global
latent code th[ and pass the result through the pre-trained
StyleGAN2 decoder. Formally,

ylpgt = DO( E@(xvatgt) + AN(EO(xyatgt)aatgt) ) 4)

global aging personal aging

By doing so, MyTM enables the integration of partially
observed, personalized aging information of an individ-
ual—using only images of that person—into the global ag-
ing trajectory. Our adapter is based on an MLP architec-
ture, with detailed implementation of the age adapter net-
work available in the supplementary material.

3.3. MyTM: Loss Funtions
Our adapter is trained on a personal photo collection
D = {(w, ai)}gil. We introduce three loss func-
tions—personalized aging loss, extrapolation regulariza-
tion, and adaptive w-norm regularization—to integrate
global priors with personal data. Additionally, we also use
the loss function L, from Sec. 3.1, based on SAM, to mit-
igate the forgetting of global priors [25, 39].
Personalized Aging Loss. After examining the loss for-
mulation of SAM [2], we notice that the primary source of
aging information is the aging loss L,4, Which relies on a
pre-trained age classifier. The problem with this global ag-
ing loss is that the age classifier is not robust across different
ethnicities, styles, and individual aging patterns [30]. It is
often impossible to train a robust aging detector that works
well for every individual. Rather than relying on the power
of a global age classifier, we propose a personalized aging
loss that encourages facial features of the transformed face
to be similar to reference images in a similar age range in
the training dataset. This encourages the re-aged image to
closely resemble how the person looked at that age, ignor-
ing the pose, lighting, and style variations.

We denote the minimum and maximum age of the train-
ing dataset D = {(z;, ai)}i]\il as Qmin, = min(ag...an)

and a4, = max(aj...a,). During training, we randomly
sample a target age aig between minimum and maximum
age gt ~ U(Amin,@maz). We create a reference set,
Dyt = {(z, aj)}j]vil, which contains actual images of the
individual near the target age (ai & 3-years). We then
employ a facial recognition network, Arcface [10], to ex-
tract identity features and compute the similarity between
the age-transformed image y; and all images in the refer-
ence set Dy, and only consider the maximum similarity.
Considering maximum similarity over the reference set en-
sures that the identity recognition networks are not signif-
icantly influenced by stylistic differences between images.
Formally, we define the personalized aging loss as:

1 —maz { (R(yly) R(Ij)>}jM:1 (5)

R(-) is a pretrained ArcFace [9] network for facial feature
recognition, (-, -) computes the cosine similarity between its
argument [41], and M is the number of images in a refer-
ence set Dy with faces near the target age (a = 3-years).

Epers-age =

Extrapolation Regularization. When training the adapter
network with personalized age loss, we observe that the net-
work’s performance can degrade when ayy falls outside the
training age range [@min, Gmaz). Specifically, this degra-
dation manifests as the generated images continuing to re-
semble the appearance at the boundaries of the training age
range (Amin, Gmaz), rather than appropriately aging or de-
aging. For instance, as illustrated in row 4 of Fig. 4 (FAD-
ING + Dreambooth), when the training set covers faces
aged 30 to 70, the model may overfit, generating faces that
still resemble a 30-year-old when a = 10.

To prevent this extrapolation failure, we enforce the
preservation of the pre-trained SAM’s output during extrap-
olation. We apply experience replay [39, 50], which encour-
ages the output of our personalized age encoder (ygt) to be
similar to that produced by the pre-trained SAM (yg¢):

Lireg-extra = M2L2 (Ui Yigt) + Apies LLpips (Vg Yigt)
+Mp Lo (yf;u Yier) (6)



Adaptive w-norm regularization. During personaliza-
tion, we observed that SAM struggles to capture distinct
facial feature changes across ages, as illustrated in row 2
of Fig. 4. We attribute this issue to the inversion-editability
trade-off [47, 58]. Specifically, the latent codes predicted
by SAM are distant from the training distribution and the
center of the latent space, W, reducing their editing capac-
ity and making personalization challenging. This trade-off
is particularly relevant in facial aging tasks. When the target
age is close to the input age, we encourage the latent codes
close to SAM’s pre-trained output, preserving inversion ac-
curacy while staying distant from the average latent code
W. As the target age diverges from the input age, greater
deformations in head shape and facial texture are needed,
requiring latent codes nearer to W to facilitate editing.

To address this, we propose adaptive W-norm regular-
ization inspired by [46], where L, = )\reg||1/\/fgrt — W] is
used to constrain the latent codes. We further enhance this
by making A, a cosine function, (-,-), of the difference
between input and target age Ayge = |a; — Qug:

'Creg = /\reg(Aage)”Wt; - W”
Areg(Dgge) = 1 — (7 + Agge/100) )

4. Experiments

In Sec. 4.1 we first introduce our experimental setup, in-
cluding datasets, experimental framework, state-of-the-art
aging algorithms, and evaluation metrics. In Sec. 4.2 we
present comparisons with state-of-the-art baselines, fol-
lowed by the application of MyTM for video re-aging in
Sec. 4.3. Finally, we present ablation studies in 4.4.

4.1. Experimental Setup

Dataset. We curated a dataset of images featuring 12
celebrities spanning a wide age range, including 7 males
and 5 females from diverse ethnic backgrounds such as
Caucasian, African American, Hispanic, and Asian. For
further details, please refer to Table 3 in the supplemen-
tary material. For each celebrity, we train MyTM using 50
images, as discussed in Sec. 4.4. We then evaluate the per-
formance of MyTM using test images of the same celebrity
at either 40 or 70 years old, depending on the task outlined
later in the experimental framework.

Experimental Framework. We consider the following two
real-world scenarios where age transformation techniques
are heavily used and demand high quality. 1) Age re-
gression or de-aging renders images of an individual to
go back in time and is heavily used in VFX for movies
and TV shows [59]. Motivated by this, we design an ex-
perimental setup where we personalize our aging model
by training on images from either a 30~70 or 50~70 age
range and then evaluate de-aging performance on an un-
seen image at 70 years old to a target age (ay; < 70
years old). We sample the target age every 10 years where
ay € 40,10, 20, 30,40, 50,60,70}. 2) Age progression

or aging renders images of an individual going forward in
time and is used for forensic investigations, missing person
searches, or as an emotional support tool to visualize de-
parted loved ones. We design an experimental framework
where we personalize our aging model by training on im-
ages from 20~40 years old and evaluate on unseen faces
at 40 years old to generate a target age (ay > 40), where
ae € {40, 50, 60, 70, 80,90, 100}.

State-of-the-art Aging Algorithms. We compare our re-
sults with the following state-of-the-art aging methods: (i)
SAM [2], which uses a pre-trained StyleGAN2 decoder and
trains an age encoder on FFHQ [23]. It treats aging as a con-
tinuous process, enabling fine-grained control over trans-
formations. (ii) CUSP [15], which jointly trains both an
age encoder and decoder on FFHQ-Aging [40]. While ef-
fective for age transformations, it lacks fine-grained control
due to its reliance on predefined age group-based transfor-
mations, limiting editing capabilities and supporting reso-
lutions only up to 256 x 256. (iii) AgeTransGAN [18],
an encoder-decoder architecture, also limited by age group-
based transformations, similar to CUSP. (iv) FADING [7],
which inverts images into the latent space of a face diffusion
model using NTI [35], then edits them through p2p [17], al-
lowing the aging diffusion model to be personalized to the
input image. We also introduce additional personalization
baselines: (v) SAM Pers. f.t, naively fine-tune SAM on
personal images; (vi) FADING + Dreambooth, personalizes
FADING by following the Dreambooth approach [50] with
the prompt "photo of a [a,g] year old [sks] man/woman”.
Evaluation Metrics. Following the evaluation protocols in
prior aging baselines [2, 7, 15, 18], we evaluate our person-
alized age transformation results in terms of age accuracy
and identity preservation. We use the following metrics to
evaluate the re-aged results quantitatively:

e Age Accuracy (Agey4p)- Following previous works
[2, 15], we define age mean absolute error as Age,; 4 p =
|atee — aigt|, Where agy is predicted by FP-Age [30].

e [dentity Preservation (IDg;,). Previous works [56, 72]
evaluate identity preservation by comparing the re-aged
face to the input face. However, facial recognition sys-
tems, such as ArcFace [9], demonstrate a strong dependence
on age and thus favor age consistency between the re-aged
face and the input face [2], favoring algorithms that perform
small changes. We address this problem by creating refer-
ence image sets of the individual near the target age which
are not used in training, and then calculate the identity sim-
ilarity to the reference images at the target age, in contrast
to using the input image. Formally,

IDsim (ytgt) = maxr {<R(ytgt)a R(‘rj)>}j1\/i1 (8)

where R(-) is a pretrained ArcFace [9] network for facial
feature recognition and x; belongs in reference image set
near the target age (aw = 3-years). We report the average
IDg;m, across all sampled target ages.
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Figure 3. Performance of age transformation techniques for age regression (first two rows) and age progression (last two rows). The first
column shows the input image, and the second column provides a reference image of the same person at the target age. MyTM (Ours) is
compared against other state-of-the-art methods including SAM [2], CUSP [15], AgeTransGAN [18], and FADING [7].

4.2. Comparison with Age Transformation Methods

Age Regression. We use two age ranges of personal pho-
tos—40 years (ages 30~70) and 20 years (ages 50~70)—to
examine the impact of training age span. Results are pre-
sented in Table 1, with visual examples of other pre-trained
methods in Fig. 3 and other personalized methods in Fig. 4.
For a detailed visual comparison across all ages (0~100),
please refer to Fig. 12 in the supplementary material.

Compared to pre-trained baselines (SAM, CUSP, Age-
TransGAN, and FADING), our method achieves superior
identity preservation (IDg;,,, ), with an 11.7% improvement
(0.67 vs. 0.60) in IDg;,, over the best-performing method,
FADING. This improvement is also maintained during in-
terpolation (e.g., when ay € 30 ~ 70), producing a
9.0% increase in IDg;,, (0.72 vs. 0.66) compared to FAD-
ING, even when FADING overfits to the input image via
NTI [35], favoring its IDyg;,,, score for smaller age gaps.

Compared to other personalized methods, our approach
achieves both high age accuracy (Age,;z) and strong
identity preservation. SAM + Pers. f.t. shows minimal im-
provement over SAM alone, underscoring the effectiveness
of our proposed loss function in Sec. 3.3. While FADING
+ Dreambooth [50] (50~70) records a slight improvement
over ours in IDg;,, (0.78 vs. 0.76), it fails to maintain age
accuracy (MAE 25.9 vs. 7.7) and ovetfits to the training age
range, limiting its ability to generalize to unseen ages.

Method A IDg;m (1)

e gemarl) T S0~ T0 am €30~ 70
SAM [2] 8.1 0.49 0.58 0.53
+ Pers. f.t. (50~70) 8.2 0.48 0.58 -
+ Pers. f.t. (30~70) 9.2 0.49 - 0.53
CUSP [15] 11.0 0.39 0.44 0.42
AgeTransGAN [18] 11.1 0.53 0.65 0.58
FADING [7] 8.9 0.60 0.72 0.66
+ Dreambooth [50] (50~70) 259 0.63 0.78 -
+ Dreambooth [50] (30~70) 23.0 0.64 - 0.70
Ours (50~70) 7.7 0.65 0.76 -
Ours (30~70) 7.8 0.67 - 0.72

Table 1. Performance of age regression where an input test image
at 70 years old is de-aged to a target age atg: < 70. We also eval-
uate MyTM (Ours) using 20-year (a € 50 ~ 70) and 40-year
(ayge € 30 ~ 70) age ranges in the training data. Bold indicates
the best results, while underlined denotes the second-best.

Age progression. We perform age progression with a 20-
year (ages 20 ~ 40) range of personal photos. Age pro-
gression specifically evaluates the extrapolation ability of
our technique to ages not seen in training. Quantitative re-
sults are presented in Table 2, with visual comparisons to
other pre-trained methods shown in Fig. 3, and a full visual
comparison provided in Fig. 12 in the supplement.

Our model outperforms pre-trained baselines, achieving
the highest age accuracy (6.3) and best identity preserva-
tion (0.70 for ayy > 40 and 0.78 for a,g € 40 ~ 60), due to
the benefits of personalization. As shown in Fig. 12, FAD-
ING often produces poor results when the target age differs
greatly from the input age, due to NTI + p2p editing [49].
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Figure 5. User Study comparing our method with base-
lines—FADING and SAM—for age regression (ay < 70) and
age progression (ay > 40). We present the percentage of user
preference for our method over the baselines.

Compared to other personalized methods, FADING +

Dreambooth achieves slightly better IDg;,,, than our model
(0.72 vs. 0.70). However, it struggles to extrapolate to un-
seen ages, resulting in a high Age,; 45 of 20.2.
User Studies. We conduct user studies to qualitatively eval-
uate our method through pairwise human evaluations. In
each pair, users see the original input image alongside two
re-aged results at the target age a;—one generated by an
existing method and the other by ours, presented in random
order. Users also receive reference images showing the per-
son’s face near a.y and are asked to select the result that best
matches the reference images while preserving the style of
the original input image.

etho (53
EEMABL) 0540 g € 40 ~ 60
SAM [2] 69 0.54 0.58
+ Pers. f.. (20~40) 103 0.56 0.59
CUSP [15] 73 0.4 0.48
AgeTransGAN [ 18] 8.5 0.61 0.65
FADING [7] 7.6 0.62 0.71
+ Dreambooth [50] 20~40) 202 0.72 0.77
Ours (20~40) 6.3 0.70 0.78

Table 2. Performance of age progression where an input test image
at 40 years old is aged to a target age aty: > 40. We also evaluate
MyTM (Ours) using 20-year (ag € 40 ~ 60) and ag > 40 age
ranges in the training data. Bold indicates the best results, while
underlined denotes the second-best. Note that FADING + Dream-
booth has the lowest aging accuracy, as measured by Age,, 4 .

We evaluate our method across two age regression tasks
(30~70 and 50~70) and one age progression task (20~40),
totaling three tasks. We then sample one input and re-aged
image pair per celebrity, resulting in 10 pairs for each age
regression task and 8 pairs for the age progression task. For
each pair, we collect 24 user responses for comparisons with
FADING and 29 user responses for comparisons with SAM.
As shown in Fig. 5, our method is significantly preferred
over the baselines across all re-aging tasks.

4.3. MyTM for Video Re-aging

Having established a personalized aging prior, we extend
our focus to video re-aging. Instead of training a sepa-
rate re-aging model specifically for video re-aging, we build



Figure 6. We apply video re-aging on a video of Jackie Chan from
the movie Bleeding Steel. Left: The keyframe from the source
video that we re-age with MyTM. Right: The re-aged face is
mapped onto other frames of the source video via face-swapping.

upon face-swapping techniques by utilizing Inswapper', a
widely adopted black-box model for face swapping [60].

Given a source video, we manually select a keyframe
in a near-frontal pose with minimal occlusion and motion
blur as the basis for re-aging. MyTM is then applied to this
keyframe to transform the face image to the desired target
age, generating a personalized re-aged face. Next, for each
video frame, the face in the current frame and the re-aged
face are input into the swapping model to generate the fi-
nal re-aged result. This re-aged face is then pasted back
onto the current frame using landmark-based warping. This
framework requires only a single re-aged face for swapping,
ensuring strong temporal consistency while preserving per-
sonalized facial identity. Our video re-aging pipeline is il-
lustrated in Fig. 6. For further details on temporal consis-
tency, please refer to the supplement.

4.4. Ablation Study

Effect of Dataset Size. We investigate the impact of train-
ing dataset size on MyTM by sampling subsets of images
for each celebrity, with sizes of 10, 50, and 100. We then as-
sess MyTM’s performance on the age regression task (ages
30~70), which demands the largest training age range. We
report the average IDg;,, in Fig. 7. Results indicate a signif-
icant performance improvement from 10 to 50 images, with
minimal gains from 50 to 100 images. Consequently, we
use 50 images for personalization, unless otherwise noted.
Effect of Proposed Loss Functions and Architecture. We
analyze the effectiveness of our proposed network architec-
ture and loss functions by conducting an ablation study in
Fig. 8. We begin with SAM and progressively introduce
each proposed component, including custom loss terms and
the adapter network. For the age regression task, we train
MyTM on ages spanning 30 to 70, testing with target ages
age < 70. Our proposed Personalized Aging Loss yields
the most improvement in ID g, .

5. Conclusion

We present MyTimeMachine, a personalized facial age
transformation technique that combines an individual’s lon-
gitudinal photo collection (as few as 50 images) with global

"https://github.com/deepinsight/insightface

1=160
Metric SAM N =10 N =50 N =100
Dataset D

Size Ablations Agerrap(d) 8.1 8.5 7.8 8.0
IDgim (1) 049 0.8 0.67 0.67

Figure 7. Effect of training dataset size D on personalization.
MyTM is trained on ages 30~70 and tested for ay < 70. Visual
examples of Robert De Niro are shown at the top, with quantitative
results displayed below.

Adapter  Extrapolation Personalized Aging  Adaptive W-norm

Model Network Reg Loss Reg 1D (1)
Ours v v v v 0.67
A) - v v v 0.65
B) - - v v 0.65
o - - - v 055
SAM Pers. f.t. - - - - 0.46
SAM - - - - 0.45

Figure 8. Contributions of our proposed loss functions and the
adapter network for the age regression task, trained on ages 30~70
and tested for ay: < 70 on Al Pacino.

aging priors. Our main technical contributions, which en-
able the learning of a personalized aging prior, include
a novel Adapter Network architecture, personalized aging
Loss, extrapolation regularization, and adaptive w-norm
regularization. Extensive quantitative and qualitative eval-
uations demonstrate that our method outperforms existing
age transformation and naive personalization approaches.
Limitations. While our model effectively performs age
transformations, as shown in Fig. 13 in the supplement,
it can struggle with accessories (e.g. glasses) due to the
limitations of the ed4e encoder [58]. Furthermore, the pre-
trained SAM model has difficulty in 1) modifying hair
color to or from white—a common challenge in other aging
works [29, 54]. 2) producing red-eye artifacts when gener-
ating older faces. Although our proposed w-norm regular-
ization mitigates these issues, they are not fully resolved.
Ethical Considerations. Facial aging is a complex and in-
herently challenging problem, and even with personaliza-
tion, our model may lack robustness across all underrep-
resented populations. Our approach also has the potential
to produce manipulated images of real individuals, which
poses a significant societal risk. This issue is common
across generative models, underscoring the need for future
research in detecting synthetic image composites.
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Supplementary Material

Along with this supplemental PDF, we provide addi-
tional visual materials (e.g., images and videos) in an
HTML file, accessible via index.html . We highly rec-
ommend readers to refer to the accompanying videos for
a comprehensive examination of the visual outcomes.

A. Overview of Appendices

Our appendices contain the following additional details:

» Sec. B provides an overview of our data preprocessing
pipeline, the curated dataset (summarized in Table 3),
and additional details about the celebrities used in exper-
iments Sec. 4.2.

e Sec. C provides implementation details of our person-
alized adapter network, including hyperparameters and
training configurations.

e Sec. D presents benchmarking results against other pre-
trained aging methods, with qualitative results shown in
Fig. 12.

 Sec. E includes benchmarking results against alternative
naive personalization techniques, with both quantitative
and qualitative results displayed in Fig. 9 and Fig. 10.

* Sec. F explains our choice of using StyleGAN2’s aging
encoder for personalization over encoder-decoder GAN
models or diffusion models.

* Sec. G discusses the design rationale behind our video re-
aging pipeline.

B. Dataset Curation

Existing in-the-wild aging datasets [30, 45, 69] lack lon-
gitudinal data for individual subjects, as they do not offer
multiple high-quality images of the same person over sev-
eral decades. To address this limitation, we collected a new
dataset as summarized in Table 3. To better illustrate the
age distributions, we count the number of images within
the age ranges 20-40, 40-60, and 60-80, and report these
numbers in the table. These ranges differ from the train-
ing ranges of 20-40, 50-70, and 30-70. For each celebrity,
we first gathered facial images, then enhanced older images
to improve visual quality, compensating for the limitations
of earlier camera technology and image processing meth-
ods. Following [61], we restored grayscale or low-quality
images to ensure a more consistent and enhanced visual rep-
resentation over time. Faces were then cropped and aligned
according to the FFHQ [23] standard. While downloading
publicly available images, we extracted metadata, such as
the time of capture, to calculate each subject’s age.

For re-aging tasks in Sec. 4.2, the available age distribu-
tion of the collected celebrities varies; for instance, some
celebrities have fewer than 50 images in the 20 to 40 age
range. Therefore, we conduct age regression tasks for the

Celebrity Agerange 20~40 40~60 60~80

Al Pacino 21~84 89 56 198
Charles III 01~76 219 409 530
Elizabeth II 03~96 65 116 539
Robert De Niro 27~81 121 340 286
Jennifer Aniston 02~55 375 322 -

Oprah Winfrey 24~70 163 529 315
Morgan Freeman 20~87 4 136 290
Jackie Chan 21~70 31 444 201
Chow Yun-fat 20~68 91 109 60
Elaine Chao 16~71 14 117 123
Diego Maradona 17~60 165 301 -

Margaret Thatcher 20~87 70 270 268

Table 3. A longitudinal facial aging dataset featuring images of 12
celebrities. The number of images for each celebrity is reported
across different age ranges. Unless stated otherwise, 50 images
are selected for training.

following 10 celebrities: Al Pacino, Charles IlI, Elizabeth
II, Robert De Niro, Oprah Winfrey, Morgan Freeman, Jackie
Chan, Chow Yun-fat, Elaine Chao, and Margaret Thatcher,
and age progression tasks for the following 8 celebrities: Al
Pacino, Charles III, Elizabeth II, Jennifer Aniston, Oprah
Winfrey, Chow Yun-fat, Diego Maradona, and Margaret
Thatcher. These results also correspond to the number of
pairs used in user studies, as discussed in Sec. 4.2. For
dataset size ablation studies in Sec. 4.4, we use the same
celebrities selected in the regression task.

C. Implementation Details

Personalized Age Adapter Network. Inspired by [3, 31,
41], our adapter network is built on a multi-layer percep-
tron (MLP) architecture that takes as input the latent vector
Wthrt and the target age (a), and outputs the offset vec-
tor AW[Q Specifically, the 18 x 512 dimensional latent
code Wtfgﬁ is first processed through a Global MLP, which
produces a down-sampled global representation Wijopal Of
dimension 18 x 32, flattened to 1 x 512. Next, we design
an Aging MLP that takes the scalar target age as input and
generates a 1 x 16 dimensional age feature, aigifea. We
then train 18 independent Style MLPs, each operating on
one of the k € [1, 18] styles in the W+ space, to produce an
offset vector for each style, AW{Q(I{). Each Style MLP
receives the 1 x 512 dimensional age-transformed latent
code from SAM, W (k), the 1 x 512 dimensional global
representation Weobal, and the target aging feature ag-feat,
and then outputs the per-style offset code AW&(/{:). Both
the Global, Aging, and 18 Style MLPs are designed as 2-
layer neural networks with ReLU activation. This archi-

tecture enables the network to subtly and effectively adjust



the latent representation, preserving the individual’s iden-
tity while incorporating personalized aging characteristics.
For each celebrity, we train our adapter network on a
GPU A6000 for 10,000 iterations, which takes approxi-
mately 4 hours. We inherit SAM’s hyperparameters, includ-
ing its original loss weights. Additionally, we set Apers-age =
1 for Eq. 5, Areg-extra = 1 for Eq. 6, and Ay = 1 for Eq. 7.

D. Comparison with SOTA Methods without
Personalization
As discussed in Sec. 4.2, we benchmark our approach
against all other pre-trained baselines, including SAM,
CUSP, AgeTransGAN, and FADING, as shown in Fig. 12.
For baseline methods like CUSP and AgeTransGAN, which
utilize pre-defined age groups based on FFHQ-Aging [40],
we interpolate between these age groups to demonstrate
continuous aging, following the approach used by SAM [2].

E. Comparison with Naive Personalization
Techniques.

We perform additional ablation studies using alternative
personalization approaches on data for Al Pacino aged 30 ~
70 years, with results shown in Fig. 9. SAM Pers. f.t. be-
haves similarly to the pre-trained SAM, as the latent codes
are far from the latent center, limiting its editing capabili-
ties. This aligns with the inversion-editability trade-off dis-
cussed in Sec. 3.3. SAM Pers. ft. + MyStyle [37] first
personalizes the SAM encoder, then tunes the decoder fol-
lowing the PTT pipeline [47]. However, this introduces sig-
nificant artifacts due to changes in the latent distribution,
which diverges from the pre-trained StyleGAN2 distribu-
tion. In SAM, global aging knowledge is learned with a
fixed StyleGAN2 decoder, and modifying decoder weights
distorts the latent space distribution, compromising the ag-
ing knowledge and introducing decoding artifacts. FAD-
ING + Dreambooth [50] overfits the aging results to the in-
put image, especially when the target age lies outside the
training age range. Additionally, this approach neglects
age-related facial shape transformations, such as a toddler’s
rounder face or proportional changes in facial features over
time, which are caused by NTI + p2p as discussed in Sec. 2.
Additionally, as discussed in Sec. 4.2, we show visual com-
parisons against other naive personalization methods for
age progression in Fig. 10.

F. Why Personalizing the Encoder SAM?

Finetuning encoder-decoder GAN with limited personal
data often leads to overfitting, mode collapse [1], and data
drift [27, 32], preventing the model from generalizing to un-
seen test images of an individual [42]. Therefore, encoder-
decoder GAN structures, like AgeTransGAN, necessitate a
substantial amount of paired data to achieve effective per-
sonalization in aging transformations. For instance, per-
sonalizing the appearance of a celebrity such as Al Pacino

Target Age

SAM

Input at 64

SAM Pers. ft.

SAM Pers. ft.
+
MysStyle

Y E) 1)
@I @fﬁKGQ

FADING +

Ours(30~70) Dreambooth

Reference

SAM Pers. ft. + FADING +
MyStyle Dreambooth

IDgim (1) 0.45 0.49 0.60 0.64 0.66

Experiment SAM  SAM Pers. ft. Ours (30~70)

Figure 9. We compare MyTM (Ours) with naive personalization
techniques: SAM Pers. ft., SAM Pers. ft. + MyStyle, and FAD-
ING + Dreambooth, trained on ages 30~70 and tested within the
same age range for Al Pacino. While SAM Pers. ft. + MyStyle
achieves a high IDg;,, score, it suffers from poor visual quality,
resulting in adversarial examples for ArcFace.

would necessitate images of him at both ages 20 and 70,
with consistent pose, lighting, and expression. However,
acquiring such data in real-world conditions is extremely
challenging, as it demands rare and specific longitudinal im-
ages that capture individuals across a wide age span under
controlled settings. This limitation makes encoder-decoder
GANES less practical for applications where personalized ag-
ing transformations are desired.

For diffusion models, there are several limitations in re-
aging tasks: (1) They lack the W latent space, which enables
fine-grained continuous aging control and editing [12]. (2)
Models like FADING, which use NTI + p2p for age editing,
often struggle with the trade-off between inversion accu-
racy and editability [49]. Additionally, FADING frequently
produces unstable results, as shown in Fig. 11, which
we attribute to the unstable NTI optimization [49, 70].
New stable optimization-free methods could be explored
for diffusion models in the future. (3) VQ auto-encoders,
commonly used in diffusion to encode images, can intro-
duce artifacts, particularly in the human face domain [35].
These issues highlight the need for an alternative approach,
such as utilizing StyleGAN2’s well-trained latent space and
optimization-free ede encoder [58], to achieve high-quality,
artifact-free re-aging transformations.
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Figure 10. Performance of personalized age transformation techniques for age progression, where an input test image is transformed to all
target ages between 0 and 100. MyTM (Ours) is trained on 20 years of data (ages 20~40). The age range included in the personal training
data is highlighted in red. We also provide an example image of the same person within 3 years of the target age as a reference.

Target Age

Figure 11. Visual results of FADING using identical input and inference code. The instability in age transformation arises from the
optimization of NTI [35], leading to inconsistencies.

G. Why Not Use a Reference Image for Face- cant style differences between the source and target faces
Swapping? can cause artifacts like flickering, particularly in real-world

Firstly, obtaining images of a person at any arbitrary age video scenarios [8, 44].

is often challenging, particularly high-quality images com-
parable to our synthesized faces at 1024x1024 resolution.
Even if reference images at the target age are available,
face-swapping techniques [6, 14, 64] generally yields op-
timal results when the source and target faces share simi-
lar styles, such as pose, expression, and lighting. Signifi-
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Figure 12. Performance of age transformation techniques for age regression (top) and age progression (bottom). The input test images
match those in Fig. 4 and Fig. 10 for consistency. For age regression, MyTM (Ours) is trained across a 40-year range (ages 30 to 70), while
for age progression, it is trained over a 20-year range (ages 20 to 40). Personalized training data age ranges are marked in red. A reference
image of the same person, taken within three years of the target age, is included for comparison.
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Figure 13. Limitations of MyTM. Our method may struggle with accessories (e.g.

by the e4e encoder [58].
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